Computer tomography (CT) have been routinely used for the diagnosis of lung diseases and recently, during the pandemic, for detecting the infectivity and severity of COVID-19 disease. One of the major concerns in using ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting is that these methods are trained on limited and biased sub-sets of publicly available COVID-19 data. This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training. To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models. For the external validation we generated Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative performance evaluation of four state-of-the-art machine learning models, viz., a lightweight convolutional neural network (CNN), and three other CNN based deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes, viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two datasets. Our analysis showed that the performance of all the models is comparable on the hold-out COVIDx CT 2A test set with 90% - 99% accuracies (96% for CNN), while on the external Indian-COVID-19 CT dataset a drop in the performance is observed for all the models (8% - 19%). The traditional ma-chine learning model, CNN performed the best on the external dataset (accu-racy 88%) in comparison to the deep learning models, indicating that a light-weight CNN is better generalizable on unseen data. The data and code are made available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
When robots interact with humans in homes, roads, or factories the human's behavior often changes in response to the robot. Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot's low-level states, actions, and rewards. A core challenge is that humans not only react to the robot's behavior, but the way in which humans react inevitably changes both over time and between users. To deal with this challenge, our insight is that -- instead of building an exact model of the human -- robots can learn and reason over high-level representations of the human's policy and policy dynamics. Applying this insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions of the human's latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that -- given RILI's measured performance with users sampled from an underlying distribution -- we can probabilistically bound RILI's expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
translated by 谷歌翻译
The use of emojis affords a visual modality to, often private, textual communication. The task of predicting emojis however provides a challenge for machine learning as emoji use tends to cluster into the frequently used and the rarely used emojis. Much of the machine learning research on emoji use has focused on high resource languages and has conceptualised the task of predicting emojis around traditional server-side machine learning approaches. However, traditional machine learning approaches for private communication can introduce privacy concerns, as these approaches require all data to be transmitted to a central storage. In this paper, we seek to address the dual concerns of emphasising high resource languages for emoji prediction and risking the privacy of people's data. We introduce a new dataset of $118$k tweets (augmented from $25$k unique tweets) for emoji prediction in Hindi, and propose a modification to the federated learning algorithm, CausalFedGSD, which aims to strike a balance between model performance and user privacy. We show that our approach obtains comparative scores with more complex centralised models while reducing the amount of data required to optimise the models and minimising risks to user privacy.
translated by 谷歌翻译
Chest X-ray (CXR) datasets hosted on Kaggle, though useful from a data science competition standpoint, have limited utility in clinical use because of their narrow focus on diagnosing one specific disease. In real-world clinical use, multiple diseases need to be considered since they can co-exist in the same patient. In this work, we demonstrate how federated learning (FL) can be used to make these toy CXR datasets from Kaggle clinically useful. Specifically, we train a single FL classification model (`global`) using two separate CXR datasets -- one annotated for presence of pneumonia and the other for presence of pneumothorax (two common and life-threatening conditions) -- capable of diagnosing both. We compare the performance of the global FL model with models trained separately on both datasets (`baseline`) for two different model architectures. On a standard, naive 3-layer CNN architecture, the global FL model achieved AUROC of 0.84 and 0.81 for pneumonia and pneumothorax, respectively, compared to 0.85 and 0.82, respectively, for both baseline models (p>0.05). Similarly, on a pretrained DenseNet121 architecture, the global FL model achieved AUROC of 0.88 and 0.91 for pneumonia and pneumothorax, respectively, compared to 0.89 and 0.91, respectively, for both baseline models (p>0.05). Our results suggest that FL can be used to create global `meta` models to make toy datasets from Kaggle clinically useful, a step forward towards bridging the gap from bench to bedside.
translated by 谷歌翻译
Recent studies in Vision-and-Language Navigation (VLN) train RL agents to execute natural-language navigation instructions in photorealistic environments, as a step towards robots that can follow human instructions. However, given the scarcity of human instruction data and limited diversity in the training environments, these agents still struggle with complex language grounding and spatial language understanding. Pretraining on large text and image-text datasets from the web has been extensively explored but the improvements are limited. We investigate large-scale augmentation with synthetic instructions. We take 500+ indoor environments captured in densely-sampled 360 degree panoramas, construct navigation trajectories through these panoramas, and generate a visually-grounded instruction for each trajectory using Marky, a high-quality multilingual navigation instruction generator. We also synthesize image observations from novel viewpoints using an image-to-image GAN. The resulting dataset of 4.2M instruction-trajectory pairs is two orders of magnitude larger than existing human-annotated datasets, and contains a wider variety of environments and viewpoints. To efficiently leverage data at this scale, we train a simple transformer agent with imitation learning. On the challenging RxR dataset, our approach outperforms all existing RL agents, improving the state-of-the-art NDTW from 71.1 to 79.1 in seen environments, and from 64.6 to 66.8 in unseen test environments. Our work points to a new path to improving instruction-following agents, emphasizing large-scale imitation learning and the development of synthetic instruction generation capabilities.
translated by 谷歌翻译
视力变压器由于其出色的性能而越来越多地嵌入工业系统中,但是它们的记忆力和力量要求使它们部署到边缘设备是一项艰巨的任务。因此,现在,模型压缩技术被广泛用于在边缘设备上部署模型,因为它们减少了资源需求并使模型推理非常快速有效。但是,从安全角度来看,它们的可靠性和鲁棒性是安全至关重要应用中的另一个主要问题。对抗性攻击就像ML算法的光学幻象一样,它们可能会严重影响模型的准确性和可靠性。在这项工作中,我们研究了对抗样品在SOTA视觉变压器模型上跨3个SOTA压缩版本的可传递性,并推断出不同压缩技术对对抗攻击的影响。
translated by 谷歌翻译
衡量移动数据的客户体验对于全球移动运营商来说至关重要。收到的参考信号(RSRP)是当前移动网络管理,评估和监视的重要指标之一。通过最小化驱动器测试(MDT)(一种3GPP标准技术)收集的无线电数据通常用于无线网络分析。在不同地理区域收集MDT数据效率低下,受地形条件和用户的存在限制,因此对于动态无线电环境来说不是足够的技术。在本文中,我们研究了RSRP预测,利用MDT数据和数字双胞胎(DT)的生成模型,并提出了数据驱动的两层神经网络(NN)模型。在第一层中,与用户设备(UE)相关的环境信息,基站(BS)和网络关键性能指标(KPI)是通过变量自动编码器(VAE)提取的。第二层被设计为可能性模型。在这里,采用了环境功能和实际MDT数据功能,制定了集成的培训过程。在验证中,我们提出的使用现实世界数据的模型表明,与经验模型相比,与完全连接的预测网络相比,与经验模型相比,精度提高了约20%或更多。
translated by 谷歌翻译
我们介绍了自回归文本到图像(Parti)模型的途径,该模型生成高保真的影像图像并支持涉及复杂组成和世界知识的内容丰富的合成。 Parti将文本对图像生成视为类似于机器翻译的序列到序列建模问题,图像令牌的序列是目标输出,而不是其他语言的文本令牌。这种策略自然可以利用大型语言模型的先前工作,通过扩展数据和模型尺寸,能力和性能的持续进展。我们的方法很简单:首先,Parti使用基于变压器的图像令牌VIT-VQGAN将图像编码为离散令牌的序列。其次,我们通过将编码器二次变压器模型缩放到20B参数来实现一致的质量改进,其新的最新零弹药FID得分为7.23,而MS-Coco的FIDED得分为3.22。我们对本地化叙述以及党的详细分析(P2),这是1600多个英语提示的新的整体基准,证明了Parti在各种类别和难度方面的有效性。我们还探索并突出了我们的模型的局限性,以定义和体现关注重点领域以进一步改进。有关高分辨率图像,请参见https://parti.research.google/。
translated by 谷歌翻译
下一代网络将积极采用人工智能(AI)和机器学习(ML)技术,用于自动化网络和最佳网络操作策略。以Open Ran(O-Ran)为代表的新兴网络结构符合这一趋势,其规范中心的无线电智能控制器(RIC)用作ML应用程序主机。各种ML模型,尤其是强化学习(RL)模型,被认为是解决与RAN相关的多目标优化问题的关键。但是,应该认识到,当前大多数RL成功都局限于抽象和简化的仿真环境,这可能不会直接转化为复杂的真实环境中的高性能。主要原因之一是模拟与真实环境之间的建模差距,这可能会使RL代理通过模拟训练不适合真实环境。此问题称为SIM2REAL差距。本文在O-Ran的背景下引起了SIM2REAL挑战。具体而言,它强调了数字双胞胎(DT)可以作为模型开发和验证的地方的特征和好处。提出了几种用例,以举例说明并证明在真实环境中训练有训练的RL模型的故障模式。讨论了DT在协助RL算法开发方面的有效性。然后提出了通常用于克服SIM2REAL挑战的基于学习的基于艺术学习的方法。最后,从数据交互,环境瓶颈和算法设计等潜在问题的角度讨论了O-RAN中RL应用程序实现的开发和部署问题。
translated by 谷歌翻译